Evaluation of Alternative Direction-of-Arrival Methods for Oceanographic HF Radars

Brian M. Emery, Member, IEEE

Abstract—The majority of ocean current measuring HF radars obtain the direction of arrival (DOA) of signals backscattered from the ocean with the multiple signal classification (MUSIC) algorithm. These radars often operate under conditions including low signal-to-noise ratio (SNR), low numbers of data samples (aka snapshots), and with the number of signal sources approaching or exceeding the number of receive antenna elements. Improving the accuracy and coverage of the radar data in these situations would improve data produced by radar networks such as the U.S. Integrated Ocean Observing System, revealing new understanding of coastal ocean dynamics. This paper presents an evaluation of DOA techniques developed over the last 10–20 years, for application to oceanographic HF radars using a simulation-based approach. Simulations performed using three commonly used receive arrays suggest that the use of maximum-likelihood estimation by alternating projection (MLE-AP) leads to similar accuracy, with improvement in coverage due to the higher number of DOA solutions obtained when compared to MUSIC. These advances come at a higher computational cost, though the difference is manageable. The analysis also illustrates the need to identify and evaluate signal detection methods (i.e., methods to identify the number of simultaneous source bearings) to work in conjunction with MLE-AP. Overall, these results suggest improvements in the data coverage of ocean current maps produced by HF radars, and thus in the many practical applications employing them such as spill response, and search and rescue.

Index Terms—Current measurement, direction finding, HF radar, ocean current, radio oceanography, simulation.

I. INTRODUCTION

D RIVERS of coastal ocean currents such as wind stress, pressure gradients, and buoyancy forcing interact with the coastal boundary resulting in highly variable and spatially complex flows. Observations that capture these flows in space and time are used to quantify the surface transport of particles or pollutants in spill responses and search and rescue operations [2]. Land-based HF radar is the only cost effective observational approach capable of resolving the temporal and spatial scales needed to understand the dynamics of coastal circulation.

Despite their success in many applications, HF radars are limited in their ability to observe complex, small scale flows. For example, a radar installation with 400-m resolution [3], [4], found substantial contribution to the total exchange across the shelf from highly complex eddies with spatial scales ~1 km and mean durations of ~5 h. A more in depth analysis of the eddy dynamics was hampered by radar system errors, which increased by a factor of two in areas of increased flow complexity [5]. Furthermore, a high-resolution numerical model of the Santa Barbara Channel [6], [7] reveals flow structures not found in HF radar observations (e.g., Fig. 1). While HF radar observations are often usefully combined other observational approaches and models in coastal oceanographic studies (e.g., [8] and [9]), investigations to reduce inherent error in the measurements are warranted [10]–[12].

The development of the oceanographic HF radar coincided with the invention of the multiple signal classification (MUSIC) algorithm for direction-of-arrival (DOA) processing [13]–[16]. The use of MUSIC by the SeaSonde, the commercial product developed by CODAR Ocean Sensors, Ltd., Mountain View, CA, USA, followed the earlier coastal ocean dynamics application radar (CODAR), which used a least squares approach to DOA processing [17]. The computational efficiency of MUSIC enabled the use of low cost personal computers, which when combined with a spatially compact receive array, likely contributed to the fact that the SeaSonde constitutes the majority of deployed systems. With a few exceptions (e.g., [18]–[22]), application of MUSIC in oceanographic contexts has been specific to the SeaSonde, which until recently was protected by U.S. Patent [23]. In the decades since the publiction of MUSIC and its application to oceanographic radars, many alternative methods for DOA processing have been developed outside of the oceanographic community, each claiming some advantage over MUSIC.

In this study, the most promising algorithms for improving extractions of radar-based ocean current data are described and evaluated in the specific context of ocean current measuring radars. While the literature on direction finding methods suggests certain advantages and disadvantages for the various DOA methods (e.g., [1], [24], and [25]), identifying an advantage for a particular method requires a comparative evaluation in the specific application as defined by, for example, the number of simultaneous signal sources, typical SNRs, and antenna geometries, etc. [25].

The goals of this study are to evaluate alternative direction finding methods, seeking an improved ability to resolve
complex coastal flow structures. To evaluate the performance of DOA algorithms, the analysis employs a simulation-based approach (e.g., [26]–[29]), with the difference of using complex flows from the high-resolution regional ocean modeling system (ROMS; [6], [7]) as the simulation inputs (see Fig. 1). Simulations allow the direct evaluation of algorithm performance in scenarios closely resembling the planned application, without the confounding factors associated with in situ comparison (e.g., [30]–[32]). The use of ROMS as the input current field represents a robust, and perhaps realistic test of DOA methods as applied by oceanographic radars.

This paper is organized as follows. Section II reviews signal processing methods for oceanographic HF radars. Section III defines the two signal models used for simulating signals received by the HF radar. DOA methods used in the study are described in Section IV, some experimental details are reviewed in Section VI, and the results and conclusions are presented in Sections VII and VIII, respectively.

II. HF Radar Techniques

Before discussing the models used to simulate HF radar backscatter, and the DOA methods investigated, the relevant signal processing used by oceanographic HF radars are reviewed. This review generally follows previous discussions specific to the SeaSonde [12], [23], [28], [33], but the methods can be applied to radar systems with arbitrary antenna configurations.

A typical HF radar transmits a frequency modulated signal (near 5, 13, or 24 MHz) that couples with the sea surface in ground wave propagation. The signals backscatter from Bragg resonant ocean surface waves [34], [35] with a wavelength \(\lambda = \lambda_{TX}/2 \), where \(\lambda_{TX} \) is the wavelength of the transmitted radio wave. The ocean surface waves impart a Doppler shift due to the combination of their phase speed and that of the radial component of the underlying ocean surface current (\(v_r \)). The effective depth of \(v_r \) is a function of the wavelength of the resonant ocean wave (and thus the transmit frequency), and ranges from 2.5–0.5 m for 5–24-MHz radars [36], [37]. Demodulation sorts the received signals as a function of range \(r \), with the range increment (\(\delta r \)) determined by the transmit bandwidth (BW) [38]

\[
\delta r = \frac{c}{2BW}
\]

given the speed of light \(c = 3 \times 10^5 \text{ km s}^{-1} \). Windowing in the fast Fourier transform (FFT) processing of the demodulated signal produces 15% overlap between range cells for SeaSondes, and up to 50% for other systems [e.g., Wellen Radars (WERA)] [39]. For a given range, observations from sequential transmit sweeps produce a time series (cf., [23]), which forms the input to Doppler resolving FFTs. Taking the conjugate products [40] of the Doppler FFTs then forms the auto- and cross-spectra. The resulting spectra sort the signal variance by frequency, revealing peaks near frequencies \(f_B = \pm \sqrt{g/\pi \lambda_{TX}} \), where \(g \) is the acceleration of gravity, corresponding to the theoretical speed of the approaching and receding Bragg resonant ocean waves [34]. Spread in the energy content in the Bragg peaks around \(f_B \) results from variation in the underlying radial currents \(v_r \).

A typical SeaSonde produces estimates of the Doppler spectra every 256 s, using a 2-Hz sweep rate (SWR) such that \(n_{\text{FFT}} = 512 \). The SeaSonde outputs averaged spectra every 10 min, combining 3 FFTs that cover a total of 12 min and 48 s. The FFT length sets the frequency bin width, \(\delta f = \text{SWR}/n_{\text{FFT}} \), and from \(\delta f \) the resolution of \(v_r \) is computed

\[
\delta v_r = \frac{\lambda_{TX} \delta f}{2}.
\]

For a 13-MHz radar with \(n_{\text{FFT}} = 512 \), \(\delta v_r \approx 4 \text{ cm s}^{-1} \). Longer FFT lengths improve bin resolution (to e.g., \(\sim 1–2 \text{ cm s}^{-1} \) [3], [39]), particularly when combined with a higher SWR (e.g., \(\text{SWR} \approx 3–4 \text{ Hz} \) [41]).
Doppler power spectra typically resolve a main peak, centered on f_B for example, containing signal from the first-order resonant backscatter, with lower peaks at adjacent frequencies resulting from higher order scattering processes [35]. Only signal from the first-order scatter contains ocean current information for DOA processing. SeaSondes use empirical methods [33] to identify the first-order region, though image processing techniques have recently been adapted for the purpose [42].

For each f in the first-order region the $M \times M$ covariance matrix $C(f)$ is formed (e.g., [33] and [40]) from bin values of the averaged auto- and cross-spectra, where M is the number of receive antennas. Studies in the signal processing literature typically apply DOA processing to covariance matrices formed directly from the antenna voltage time series [43], [44], rather than to $C(f)$ from the frequency domain. The FFT preprocessing described here sorts variance by Doppler frequency, and hence velocity, allowing application of DOA processing to individual Doppler velocities. The consideration of individual narrow ranges of frequency, increases the likelihood that the signal emanates from a small fraction (or a few separate, small fractions) of the total azimuthal range. This step, referred to as narrowband processing [25], decreases the number of simultaneous source bearings.

Determining the number of simultaneous DOAs present in $C(f)$ constitutes the next step in the processing scheme. The SeaSonde uses a hypothesis testing approach [33] to determine if the data in $C(f)$ results from one or two bearings. Other methods solving the general problem of determination of the number of simultaneous signal sources exist (known as signal detection e.g., [45]) but will not be addressed here. This study uses the known current input field to determine the number of source DOAs, described in Section VI.

DOA processing associates v_r with a direction (θ), producing a polar map of $v_r(r, \theta, t)$ for the time (t) and range (r) represented by $C(f)$. SeaSondes commonly produce these maps at 10-min intervals, merging together seven maps at hourly intervals and outputting the median (by default) [46]. Further processing steps not discussed here combine radial maps from several HF radars to produce the total vector surface current estimates using least squares [17], optimal interpolation [47], [48], or other techniques [49], [50]. This analysis focuses on the production of $v_r(r, \theta, t)$, since these form the basic data product of individual HF radars.

III. SIMULATION SIGNAL MODELS

A. General Array Data Model

The simulation of signal backscattered from the ocean surface can be considered a special case of a more general array data model (e.g., [16], [44], and [51]). The general model describes the voltages received (Y) on each of the M antennas as a function of the array response A, the signal sources $X(t)$, and the noise $e(t)$

$$ Y = AX(t) + e(t). \quad (3) $$

The $M \times N$ matrix A gives the typically complex valued response of the M antennas to the N signal sources located at $\theta_1, \theta_2, \ldots, \theta_N$ as a function of the antenna pattern at those angles $a(\theta_1), a(\theta_2), \ldots, a(\theta_N)$ such that

$$ A = \begin{bmatrix} a(\theta_1) & a(\theta_2) & \ldots & a(\theta_N) \end{bmatrix}. \quad (4) $$

The $N \times K$ matrix $X(t)$, where K is the number of independent data samples, or “snapshots” [43], represents signal from the N sources. After computing the $M \times M$ covariance matrix with (3), the $M \times M$ covariance matrix is computed

$$ C = \frac{1}{K}YY^H \quad (5) $$

where H denotes the Hermitian conjugate.

The analysis uses two implementations of the signal model (as described in [12]), the first with a relatively simple $X(t)$, and the second with $X(t)$ designed to model backscatter from the ocean surface.

B. Discrete Source Model

The first implementation of the signal model defines $X(t)$ for up to $M - 1$ point sources as an $N \times K$ collection of zero mean, normally distributed random numbers X_t, with each time step $t = 1, 2, \ldots, K$ independent [43]

$$ X(t) = \begin{bmatrix} x_1(t_1) & x_1(t_2) & \cdots & x_1(t_K) \\ \vdots & \vdots & \ddots & \vdots \\ x_N(t_1) & x_N(t_2) & \cdots & x_N(t_K) \end{bmatrix}. \quad (6) $$

Radar simulations with this model remove much of the complexity present in oceanographic HF radar data, while retaining fundamental performance differences depending only on the receive antenna and the DOA method. Identifying the differences informs the analysis of more complex simulations.

C. Oceanographic Source Model

The second implementation of the signal model simulates signal received by oceanographic HF radars by using (3) with $X(t)$ defined

$$ X(t) = \gamma_+ \exp \left(i(\omega_B + \omega_c)t \right) + \gamma_- \exp \left(i(-\omega_B + \omega_c)t \right) \quad (7) $$

where γ_\pm is a decorrelation factor (discussed below), $\pm \omega_B$ is the frequency shift due to advancing and receding Bragg waves, and ω_c is the frequency shift resulting from the ocean currents. In (7), $\exp \left(i(\pm \omega_B + \omega_c)t \right)$ models the total frequency shift due to the combined effects of the Bragg waves and the currents. Here, $\omega_B = (2k TX g)^{1/2}$ is a function of the radar wave number $k_{TX} = 2\pi f_{TX}/c$, while $\omega_c = 2k TX v_r$ is a function of the radial velocity v_r of input ocean current field (v_r). The dependence of v_r on θ causes ω_c to also depend on θ. Thus, the dependence of (7) on v_r defines $X(t)$ at all θ in view of the simulated radar.

As in [12], v_r is obtained from the surface current field of ROMS as configured and run for [6]. This application of ROMS used a one-way nesting scheme and climatology [52], [53], with the two innermost domains forced by the Weather Research Forecast model at 6 km resolution [54]. The surface velocity
field, with 100-m resolution, is used to compute the radial component to a simulated HF site (v_r) for all of the $O(1 \times 10^4)$ grid points within a range cell (e.g., Fig. 1), at several ranges. The radar simulations assume constant v_r in time (i.e., over all data snapshots). Fig. 2 shows the profiles of v_r used in radar simulations, which were limited to the six range cells shown, each originating from the same hour of ROMS data.

The model (7) includes a random factor γ_{\pm} to decorrelate the signals at an angular separation below the angular resolution of the radar [12]. The simulation constructs the $N \times N$ matrix γ_{\pm} from an $N \times 1$ vector of zero mean random numbers drawn from a normal distribution (defined here as the vector γ_{\pm}), such that $\gamma_{\pm} = \text{diag}(\gamma_{\pm})$, where the diag function maps the vector to the diagonal of a matrix. New values for γ_{\pm} are drawn for each data snapshot. The matrix γ_{\pm} models an ocean surface processes that results in uncorrelated HF radar data for angular separations of about $0.5^\circ - 2^\circ$ [17], [26], [55]. Previous simulation-based studies included the effect of wind [26]–[29], some using it to decorrelate signals in the way that (7) uses γ_{\pm} [26], [27]. Rather than include the additional complexity of wind effects on the angular distribution of Bragg waves, the model specified by (7) assumes the homogeneous presence of Bragg waves (both advancing and receding) at all θ.

Using (7) in (3) produces voltage timeseries that contain the combined signal for the frequencies given by $\pm \omega_B + \omega_c$. Following the processing scheme described in Section II, the
auto- and cross-spectra of these timeseries are computed and K of them averaged together (which is equivalent to forming 10-min averaged cross spectra (CSS files) in the SeaSonde). We then populate a covariance matrix \(C(f) \) for each frequency bin separately. \(C(f) \) forms the input to the DOA methods.

IV. DIRECTION-OF-ARRIVAL METHODS

Of the many alternative methods to MUSIC for DOA processing, several appear suitable for application to oceanographic HF radar based on their reported performance characteristics. The following reviews the MUSIC algorithm, before describing alternative DOA methods and their differences.

A. Multiple Signal Classification

The MUSIC algorithm [13]–[16] was a major advance for problems requiring determination of the DOAs of multiple simultaneously incident sources. These problems arise in many branches of science and technology including seismology, astronomy, sonar, bomb detection, personal communications, and medical research [24], [56].

Beginning with the eigendecomposition of the data covariance matrix \(C \), the MUSIC algorithm associates the \(N \) largest eigenvalues with the signal and the remaining \(M - N \) eigenvalues with the noise. The eigenvectors associated with the signal form the signal subspace \(E_S \) and those associated with the noise form the noise subspace \(E_N \). From \(E_N \), MUSIC computes the DOA function \(P_{\text{MUSIC}}(\theta) \) for each \(\theta \) in \(A \) as

\[
P_{\text{MUSIC}} = \frac{1}{A^H E_N E_N^H A}
\]

where \(A(\theta) \) is \(M \times 1 \). The DOA solutions are the \(\theta_N \) found at peak values of (8). The advantage of MUSIC is that the search over all \(\theta \) is 1-D.

B. Weighted MUSIC

Introducing a weighting matrix \(W \) into the MUSIC DOA function creates the DOA method known as Weighted MUSIC (W-MUSIC; [24]). The weighting matrix modifies the relative influence of each of the eigenvectors, with the goal of improving angular resolution without increasing error

\[
P_{W-\text{MUSIC}} = \frac{1}{A^H (E_N E_N^H) W (E_N E_N^H) A}
\]

Investigations of W-MUSIC define \(W \) as \(W = [0 \ 0 \ 1]^T [0 \ 0 \ 1] \) (e.g., for the 3-element SeaSonde case), with the superscript \(T \) denoting transpose. With this definition of \(W \), W-MUSIC is known as the Min-Norm method [24]. The Min-Norm version of W-MUSIC exhibits improved performance at low SNR and small samples, and better resolution for uniform linear arrays [24].

C. Maximum-Likelihood Estimation by Alternating Projection

Maximum-likelihood estimation (MLE) methods in general produce the “optimal” DOA solution, but due to their computational costs are rarely used in practice [56]. In the formulation of [1], the MLE is computed with alternating projection search (MLE-AP), seeking the \(\theta_N \) that maximize

\[
P_{\text{MLE}} = \text{Tr}(A(A^H A)^{-1} A^H C)
\]

where \(\text{Tr} \) is the matrix trace operator, and \(A \) is \(M \times N \) as in (4). The MLE-AP algorithm [1] reduces the costs of computing (10) through an efficient search method. To search the \(N \)-dimensional solution space, the method alternately fixes one parameter (e.g., \(a(\theta_i) \) in \(A \)), while maximizing the other \(\theta_j \), until the overall maximum is obtained. As the algorithm steps through \(\theta \), rather than compute the projection \(A(A^H A)^{-1} A^H \) in (10), which includes a matrix inversion, the method uses a projection update formula to further reduce computational cost.

MLE-AP results in a substantial improvement in computational burden over MLE computed with other search methods—though it is still more demanding than MUSIC. This formulation of the maximum-likelihood method is also known as the conditional maximum likelihood [25], and the deterministic maximum likelihood [24]. These definitions imply specific initial assumptions in the derivation of (10)—essentially that the signals are nonrandom but unknown. MLE-AP has been demonstrated to have lower errors and better angular resolution than MUSIC in a variety of scenarios [1], [24], [56].

D. Stochastic Maximum Likelihood (SML)

Derivation of the SML method starts with the initial assumption that the signals result from a Gaussian random process [57]. The derivation then results in a cost function that differs from (10). Instead the SML method finds the minimum of

\[
P_{\text{SML}} = \log(\det((A^H (C - \sigma I) A^H + \sigma I)))
\]

where \(\sigma \) is defined as

\[
\sigma = \frac{1}{M - N} \text{Tr}((I - A A^H) C).
\]

Here, \(I \) is the \(M \times M \) identity matrix, and \(A^H \) is the Moore–Penrose inverse of \(A \). Our implementation of the SML method uses alternating projection search as in (10), but requires substantially more computational effort than MLE-AP due to the need to evaluate (11) at every step. Better performance for SML compared to other MLE methods has been observed for scenarios with low SNR or “small” \(M \) [57].

E. Weighted Subspace Fitting (WSF)

The WSF method [58], alternatively known as the method of direction estimation [25], [59], can be interpreted as an MLE method that fits the optimal subspace (e.g., spanned by \(A \)) to the signal eigenvectors of \(C \) [25]. Beginning with an estimate of the noise variance from the noise eigenvalues \(\lambda_i \) of \(C \)

\[
\sigma = \frac{\sum_{i=N+1}^{M} \lambda_i}{M - N}
\]

we compute the optimal weights with the matrix of signal eigenvalues \(A_S \)

\[
W = (A_S - \sigma I)^2 A_S^{-1}.
\]
The WSF method then finds the minimum of the function

\[F_{\text{WSF}} = \text{Re} \left(\log \left(\text{Tr} \left((I - AA^H) E_S W_E S^H \right) \right) \right). \]

(15)

Similar performance has been found for WSF when compared to SML, with reduced computational cost [24]. WSF also provides a method for determining the number of signals [58]—a feature not investigated here.

Implementations of the above methods were validated with test scenarios using (3), and by reproducing figures from the cited publications. An additional test was formulated based on a detailed example SeaSonde simulation [40]. Results were also compared with the Cramer–Rao lower bound (CRB) [25], [44], [51], which gives the theoretical bound on the accuracy of an estimator based on the characteristics of the receive array, SNR, K, and N. Methods for computing the CRB are given in [12].

V. RECEIVE ARRAY DESCRIPTIONS

This analysis evaluates DOA methods with the receive array types that are most frequently used to observe ocean surface currents. The array types include the SeaSonde (with \(M = 3 \)), a rectangular array with \(M = 8 \) (hereafter RA-8), and a uniform linear array with \(M = 16 \) (hereafter ULA-16). The following describes each of the arrays with their “idealized” mathematical characteristics, without considering the distortions from ideal that are typically encountered in the field. Array geometry fundamentally affects DOA performance and provides one aspect of the specific application in which to evaluate the DOA methods.

The SeaSonde array consists of three collocated antennas: a monopole and two orthogonal mounted loops [60]. The cosine response of the loop antennas gives the array its directional characteristics, while the monopole gives the phase and amplitude reference for normalization. The manifold matrix \(a(\theta) \) is given by

\[a(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix}^T. \]

(16)

The idealized representation of (16) consists solely of real valued numbers, since the phases are zero.

Given the increased oceanographic use of rectangular receive arrays (cf., [61]), the following defines the RA-8 based on a 9-element, \(3 \times 3 \) square grid. Here, the diagonal length of the square is set to \(\lambda_{TX} \), such that the spacing between elements is \(\lambda_{TX}/2\sqrt{2} \). The diagonal of the grid is aligned parallel to the coastline, and the element nearest the ocean is removed. The mathematical description of the array begins with the definition of a uniform rectangular array (e.g., [25])

\[a(\theta) = \begin{bmatrix} \vdots & \exp(i2\pi d(n \cos(\theta) + m \sin(\theta))) & \vdots \end{bmatrix}. \]

(17)

The grid spacing normalized by \(\lambda_{TX} \) is defined as \(d = 1/(2\sqrt{2}) \). Vectors \(n \) and \(m \) specify the element positions relative to the phase reference in the center of the array, defined \(n = [0 \ 1 \ -1 \ 0 \ 1 \ -1 \ 0 \ 1]^T \), and \(m = [-1 \ -1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1]^T \). The element with \(n = m = -1 \) has been removed, giving a total of \(M = 8 \) elements.

Following [56], the ULA-16 is defined with \(\theta \) relative to the array normal, \(\lambda_{TX}/2 \) spacing between elements, and phases referenced to the center of the array

\[a(\theta) = \begin{bmatrix} \exp(i2\pi d_1 \sin \theta) & \vdots & \exp(i2\pi d_M \sin \theta) \end{bmatrix}. \]

In (18), \(d_m \), with \(m = \{0, 1, \ldots, M - 1\} \) specifies the distance from the array center

\[d_m = \frac{1}{2}\left(m - \frac{M - 1}{2}\right). \]

(19)

A linear array with \(\lambda_{TX}/2 \) spacing is known as a uniform linear array [25].

VI. ADDITIONAL SIMULATION METHODS

A. Empirical Signal Detection

The determination of the number of signal sources, known as signal detection, typically forms an integral aspect of the DOA calculation, directly influencing the performance of the radar. Detection methods commonly used with direction finding oceanographic HF radars [33] depend in part on parameters that are specific to MUSIC processing, namely the eigenvalues and their ratios. A preliminary analysis of detection methods highly cited in the DOA literature (e.g., the Akaike information criteria and minimum description length [45]) suggests that these methods are not suitable for oceanographic radars. These methods rely on large differences between signal eigenvalues and noise eigenvalues, while eigenvalues from oceanographic radars often have small differences—leading to errors in detection. Further work to identify suitable detection methods for oceanographic radars, particularly ones that do not depend on the distribution of eigenvalues, is ongoing. In the meantime, to isolate performance specific to the DOA method, this analysis specifies the number of signal sources based on the ROMS ocean current fields input to the simulation. Considering the DOA methods in isolation allows the analysis of relative performance based solely on the DOA method, removing additional performance factors that may result from imperfect signal detection.

The goal of signal detection is to identify the number of distinct signal sources (\(N \)) that are represented by the data covariance matrix. The DOA inversion then uses \(N \) and the covariance matrix to find the bearings to the signal sources. Since the simulation uses a known current field as the input, this information can be used to specify \(N \). Fig. 2 shows the profiles of \(\nu_r \) from ROMS used in the radar simulations, plotted as a function of bearing, along with the empirically determined values of the number of signal sources (\(N \)) for different values of \(\nu_r \). The choice of \(N \) necessitates some subjectivity, since the radars ability to resolve separate signal sources is a function of the array beamwidth, the SNR, and the source separation (cf., [12, App. B] and [44]).
When simulation inputs consist of surface currents from ROMS, a “signal source” consists of an area of grid of points that span a range of bearings with similar values of \(v_r \) (i.e., values of \(v_r \) in the same Doppler bin). The area of grid points, or spatial patch, spans 1.5 km in range, and some angular width, which varies significantly as shown by Fig. 2. For example, the region in Fig. 2(a), with \(v_r \sim 19 \text{ cm s}^{-1} \) spans bearings between 100° and 165°. Very narrow angular widths, such as in Fig. 2(c), with \(v_r \) near \(19 \text{ cm s}^{-1} \) and bearing near 160° are also found. The latter appear to be missed by DOA methods, mostly likely due to the low SNR they produce. By inspection of these figures, regions of \(v_r \) are associated with \(N = 1 \), \(N = 2 \), \(N = 3 \), or \(N = 4 \) sources as shown by the colored regions in the figures. Regions shown in Fig. 2 were used in the SeaSonde and RA-8 simulations, with slightly different values for \(N \) used with the ULA, due to the narrower field of view (98°–276°) for that array.

B. Monte Carlo Simulations

For both the discrete source simulations and the oceanographic radar simulations with ROMS, 400 Monte Carlo simulations are run for each integer SNR from 0 to 30 dB. For each iteration, new random values for noise are generated at the specified SNR. The oceanographic radar simulations use a limited number of ROMS range cells, shown in Fig. 2, due to the need to empirically determine the effective number of signal sources (i.e., spatial patches of signal with similar Doppler velocity) as described above. Though limited in number, these range cells provide a thorough evaluation of the DOA methods. The ROMS range cells present the DOA methods with \(N \) in the range \(1 < N < 4 \), with a variety of angular separations between them, and with variation in the angular widths of each signal source spatial patch. Thus, the analysis explores a parameter space defined by SNR, \(N \), the angular separation between sources, and the angular widths of each source patch—for a variety of receive arrays and DOA methods.

C. RMS Error Calculation

One metric used to evaluate DOA method performance is the RMS bearing error, \(\sigma_{\text{RMS}} \). Given the simulation source locations at \(\theta_i \), the DOA estimates \(\hat{\theta}_i \) from a DOA method, and an ensemble size \(n \), \(\sigma_{\text{RMS}} \) is computed as

\[
\sigma_{\text{RMS}} = \sqrt{\frac{\sum_{i=1}^{n} (\theta_i - \hat{\theta}_i)^2}{n}}.
\]

When using \(v_r \) from ROMS, the signal source represented by \(\theta_i \) takes on a range of possible values as described above. In this case, the value of \(\theta_i \) that is closest to \(\hat{\theta}_i \) is used when computing (20).

D. SNR Calculation

In simulations with the discrete source model, SNR is defined as

\[
\text{SNR} = 10\log_{10}(\sigma_s/\sigma_n)
\]

where \(\sigma_s \) and \(\sigma_n \) are the variance of the array voltage and noise, respectively, as defined for (3). When simulating oceanographic radars, the SNR calculation follows the SeaSonde method (cf., [62]), where (21) is computed using the bin value of the power spectrum for \(\sigma_s \), and \(\sigma_n \) is estimated from an average of the noise-only Doppler bins, outside of the region expected to contain Bragg scattered signal.

VII. RESULTS

The following describes results of simulations using (3), first with the discrete source model (6), and then with the oceanographic radar model (7) and \(v_r \) from ROMS. Beginning with the discrete source model allows us to demonstrate known differences in DOA methods for ULAs, and then look for these differences with the SeaSonde and RA-8. We also use the discrete source model to investigate the SeaSonde with \(N = 3 \), which may occur with oceanographic radars as suggested by ROMS \(v_r \). The results of simulations with the discrete source model inform the interpretation of the more complex simulations using the oceanographic radar model.

A. Discrete Sources at Two Bearings

To illustrate known performance differences between the DOA methods, we first simulate two discrete, closely spaced signal sources, following a scenario described in [25]. The scenario, simulated here with the ULA-16, \(K = 10 \), and SNR ranging from 0 to 30 dB, illustrates a characteristic of MUSIC known as MUSIC-breakdown, which is defined as an abrupt loss of accuracy below a given SNR threshold [63], [64]. Simulations using two sources separated by \(\Delta \theta = 3.2° \) produce a substantial increase in \(\sigma_{\text{RMS}} \) for MUSIC and W-MUSIC compared to WSF, SML, and MLE-AP (see Fig. 3) with decreasing SNR. In this
scenario, the source spacing is a fraction of the array half power beamwidth ($\Delta \theta_{\text{HPBW}}$). As $\Delta \theta_{\text{HPBW}}$ typically represents the resolution of beam forming radars, this scenario demonstrates the SNR required to resolve sources with “super-resolution” [44]—or the ability to distinguish signal sources separated by less than the beamwidth. Here, $\Delta \theta_{\text{HPBW}}$ is computed as the range of θ where the power of the main beam is greater than half the maximum power (cf., [25]). Given the array manifold, the antenna power is computed

$$P(\theta) = \frac{1}{M} |\mathbf{A}_0^H \mathbf{A}(\theta)|^2$$

where $\mathbf{A}_0 = \mathbf{A}(\theta_0)$ given the reference angle θ_0 ($\theta_0 = 0^\circ$ here). For example, the ULA-16 has $\Delta \theta_{\text{HPBW}} = 6.37^\circ$, and the test scenario has sources separate by $\Delta \theta_{\text{HPBW}}/2$.

MUSIC-breakdown is well known for standard array types such as ULAs [25], [63], [64], but it is not known to have been investigated for the SeaSonde. Fig. 4(a) shows results of simulations with the SeaSonde array and sources located at $\Delta \theta = 65.5^\circ$, or about half the SeaSonde $\Delta \theta_{\text{HPBW}} = 131^\circ$.

MUSIC-breakdown is not observed for the SeaSonde. Instead Fig. 4(a) shows similar σ_{RMS} for all DOA methods, with MLE-AP, SML, and WSF showing only slightly lower σ_{RMS} between 8- and 16-dB SNR. Below 4 dB SNR, σ_{RMS} for all methods becomes greater than half the source separation (or greater than 32°).

In simulations with the SeaSonde, instead of MUSIC-breakdown (i.e., in accuracy), as SNR decreases MUSIC increasingly fails to resolve the two sources. MUSIC and W-MUSIC instead return single DOA solutions, while MLE-AP, WSF, and SML consistently return two solutions. Since we are interested in performance relative to MUSIC, Fig. 4(b) shows the fraction of DOA solutions returned expressed as a percentage of the number returned by MUSIC

$$\% \ n_{\text{MUSIC}} = \frac{n}{n_{\text{MUSIC}}} \times 100.$$

Below 15 dB SNR, the number of DOA solutions from MLE-AP, WSF, and SML exceed those of MUSIC and W-MUSIC, increasing linearly with decreasing SNR.

Other effects of signal source separation on DOA performance with the SeaSonde array are shown by Figs. 5 and 6. Simulations for these figures again used two sources, but at separations of $0.3 \times \Delta \theta_{\text{HPBW}} = 39.3^\circ$ and $0.7 \times \Delta \theta_{\text{HPBW}} = 91.7^\circ$, respectively. The plot of σ_{RMS} versus SNR in Fig. 5(a) shows higher σ_{RMS} for the more closely spaced signal sources when compared with Fig. 4(a). In this case, MUSIC and W-MUSIC produce lower σ_{RMS} at low SNR compared with the other DOA methods, but as shown by Fig. 5(b), these result from significantly fewer DOA solutions. As shown by Fig. 5(b), MLE-AP, WSF, and SML return more than 140% of n_{MUSIC} between 5 and 10 dB. Simulations with sources separated by $0.7 \times \Delta \theta_{\text{HPBW}}$ in contrast, show that increased separation results in similar σ_{RMS}, and diminished differences in $\% n_{\text{MUSIC}}$ between the DOA methods. Similar results were found when using the RA-8 array ($\Delta \theta_{\text{HPBW}} = 51.1^\circ$) in these scenarios. As the source spacing increases, the differences between the methods diminish. When sources are closely spaced, and the SNR is low, increased DOA solutions for MLE-AP, SML, and WSF suggest that their use could increase the azimuthal resolution and coverage of oceanographic HF radars.

B. SeaSonde With Three Discrete Sources

The input velocity field from ROMS in Fig. 2 indicates the likelihood of situations with $N \geq M$ for the SeaSonde. This situation results when the same ν_r occurs at more than $M - 1$ separate patches, for example in Fig. 2(a) for $0 < \nu_r < 4 \text{ cm} \text{s}^{-1}$. Given the likelihood of this scenario, simulations were run to investigate the effect on performance, and to identify any difference between DOA methods that may result.

Fig. 7 shows σ_{RMS} versus SNR resulting from simulations with the SeaSonde and $N = 3$ discrete, equal power sources located at -65°, 0°, and 65°. The presence of the third signal source causes elevated σ_{RMS}, with minimum values near 30°. Overall, σ_{RMS} is higher than found with the two source simulations [e.g., Figs. 4(a), 5(a), and 6(a)]. Results from MLE-AP and WSF show slightly lower σ_{RMS} for SNR $< 10 \text{ dB}$ compared to
EMERY: EVALUATION OF ALTERNATIVE DIRECTION OF ARRIVAL METHODS FOR OCEANOGRAPHIC HF RADARS

Fig. 5. (a) σ_{RMS} versus SNR for the DOA methods from simulations of two signal sources separated by 39.3° apart (0.3 Δ_{HPBW}), for a 3-element SeaSonde array with $K = 10$. (b) Number of DOA solutions returned by each method, expressed as a percentage of the solutions returned by MUSIC computed with (23). WSF, MLE-AP, and W-MUSIC have been slightly offset for clarity.

MUSIC. Inspection of the individual DOA solutions (not shown) suggest that the presence of the third signal source introduces error equally into the two DOA solutions.

The simulations of the SeaSonde with $N = 3$ demonstrate the influence of the presence of the third source on the DOA performance. In the case of MUSIC and W-MUSIC, the eigendecomposition of the data covariance matrix typically sorts the variance into orthogonal components consisting of signal and noise. In the $N = 3$ case, the eigendecomposition is unable to separate the signal and noise into separate subspaces, leading to errors in the DOAs returned by MUSIC. This phenomenon, known as subspace leakage [24], [56], occurs when the assumption that $N < M$ does not apply. DOA solutions from MLE-AP, WSF, and SML are similarly corrupted in this situation, though the mechanism differs. Further simulations varying relative signal levels of the sources, along with Fig. 7, indicate that when the ocean surface presents $N \geq M$, the resulting DOA solutions will have higher σ_{RMS} than when $N < M$. Furthermore, when $N \geq M$, the $M - 1$ solutions identified will result from the sources with the highest SNR, or the largest angular separation.

C. Sources Based on ROMS

1) SeaSonde Array: Fig. 8(a)–(d) shows results obtained with the DOA methods when applied to simulations with ROMS v_r (see Fig. 2). Results quantifying performance with σ_{RMS} are separated by the number of signal sources N as described above. When $N = 1$ [see Fig. 8(a)] similar results are found for MUSIC, MLE-AP, and WSF, while higher σ_{RMS} is found for W-MUSIC, and for SML when SNR > 20 dB. The $N = 2$ results in Fig. 8(b) are similar to the results of Fig. 4(a), with the exception of the high σ_{RMS} found for SML. In Fig. 8(a)–(c), minimum values of σ_{RMS} increase with increasing N, as suggested by the results the simulations of $N = 3$ discrete sources. Minimum σ_{RMS} goes from less than 3° when $N = 1$ [see Fig. 8(a)], to $\sigma_{\text{RMS}} > 5°$ when SNR < 20 dB and $N = 2$ [see Fig. 8(b)], and up to 15° when $N = 3$ [see Fig. 8(c)]. The decreased σ_{RMS} in Fig. 8(d) compared to the $N = 3$ case results when the presence of the flow field at many bearings creates an upper limit on the maximum possible error. For example, in Fig. 2(f) with $0 < v_r < 10$ cm s$^{-1}$, the angular distance between patches of
The article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 7. σ_{RMS} versus SNR for the DOA methods from simulations of three signal sources at -65°, 0°, and 65°, for an $M = 3$ element SeaSonde array with $K = 10$.

Fig. 8. σ_{RMS} versus SNR for simulations with the ROMS radial velocities in Fig. 2 and the SeaSonde receive array, for (a) $N = 1$; (b) $N = 2$; (c) $N = 3$; and (d) $N = 4$.

v_r is at most 25°. Overall, with the SeaSonde array Fig. 8(a)–(d) shows very little difference in performance in terms of σ_{RMS} between MUSIC, MLE-AP, and WSF.

As suggested by Figs. 4(b), 5(b), and 6(b), however, simulations with ROMS identify an advantage for MLE-AP and WSF in terms of the number of DOA solutions returned. Fig. 9(a)–(d) shows the number of DOA solutions as a percentage of the number returned by MUSIC, n_{MUSIC} as in (23), separating the results by the number of sources and plotting versus SNR. When $N = 1$, MUSIC, MLE-AP, and WSF perform similarly, with a slight advantage over SML and W-MUSIC. In the $N = 2$ case [see Fig. 9(b)], MLE-AP and WSF produce more than 120% of n_{MUSIC} at low SNR. Fig. 9(c) and (d) shows similar results, with MLE-AP and WSF producing up to 115% of n_{MUSIC}. The improvement in n_{MUSIC} occurs when $N > 1$, with most occurring when SNR < 20 dB, and the largest differences occurring just below 10 dB.

2) Rectangular 8-Element Array: Fig. 10(a)–(d) summarizes results of simulations with ROMS and the RA-8 receive antenna, in terms of σ_{RMS} as in Fig. 8(a)–(d). Fig. 10(a) with $N = 1$ shows similar performance for all the DOA methods, with $\sigma_{RMS} < 3^\circ$ for SNR > 10 dB. This result contrasts with Fig. 10(b), which shows a significant difference between the DOA methods for $N = 2$. The early “breakdown” in MUSIC performance occurs near SNR = 20 dB (for both MUSIC and W-MUSIC), with MLE-AP, WSF, and SML producing σ_{RMS} near 1° for SNR > 10 dB. This result contrasts with Fig. 10(b), which shows a significant difference between the DOA methods for $N = 2$. The early “breakdown” in MUSIC performance occurs near SNR = 20 dB (for both MUSIC and W-MUSIC), with MLE-AP, WSF, and SML producing σ_{RMS} near 1° for SNR > 10 dB. Maximum values of $\sigma_{RMS} = 8^\circ$ for MLE-AP occur at 4 dB SNR. The DOA methods produce similar results for $N = 3$ and $N = 4$ [see Fig. 10(c) and (d)], with low σ_{RMS} at low SNR for all DOA methods in Fig. 10(d). As in Fig. 8(d), this results from the presence of the flow at many bearings creating an upper limit on the maximum possible error. Fig. 10(c) shows a 1° advantage in σ_{RMS} for MUSIC, which results from fewer data points as shown by Fig. 11(c) and (d). These figures show $\%n_{MUSIC}$ for the RA-8 simulations, with MLE-AP and WSF producing up to 120% and 140% of n_{MUSIC} for $N = 3$ and $N = 4$.
EMERY: EVALUATION OF ALTERNATIVE DIRECTION OF ARRIVAL METHODS FOR OCEANOGRAPHIC HF RADARS

3) Linear 16-Element Array: Fig. 12(a)–(d) shows σ_{RMS} for simulations with ROMS and the ULA-16. A difference between MUSIC, MLE-AP, and WSF occurs when $N = 2$ [see Fig. 12(b)], which shows σ_{RMS} near 6° for MUSIC, 4° for WSF, and 3° for MLE-AP. Similar, though diminished differences occur in Fig. 12(c) and (d). All the methods return the same number of DOA solutions (data not shown). Compared with the other arrays, the ULA-16 produces very low σ_{RMS}. Fig. 12(a) has the lowest values of σ_{RMS} for any of the receive arrays, less than 1°, for SNR > 10 dB, computed over its narrower azimuthal view.

4) Computational Cost: Table I summarizes the computational costs for the DOA methods and the three receive arrays, as the time relative to MUSIC. Times were logged for each of the DOA methods over the 8800 simulations per ROMS range cell, with the count incrementing only when the DOA method was running. To produce Table I, total time for each method was divided by the time used by MUSIC. Results demonstrate the well-known computational advantage for MUSIC (and W-MUSIC), approximately a factor of 10, compared to MLE-AP. SML and WSF require considerably more computational time. As implemented, MLE-AP uses the projection update formula [1], which significantly decreases the computational demands relative to SML and WSF, both of which use the alternating projection search described for MLE-AP [1]. Table I reports the
relative times, since actual run times varied by orders of magnitude depending on the computer used, while the relative times were found to be stable. As an example, processing time on a desktop computer with 16-GB RAM and a 3.4-GHz processor for 4600 Doppler bins (approximately the size of a typical SeaSonde Cross Spectra file for all range cells) with the SeaSonde array, was about 15 s for MUSIC, and 116 s for MLE-AP (implemented in MATLAB).

VIII. CONCLUSION

Simulations of oceanographic HF radars using surface currents from ROMS provide a complex and demanding test of DOA methods. This analysis suggests improved performance from MLE-AP and WSF compared to MUSIC for the SeaSonde and RA-8 arrays, in that these DOA methods return more solutions than MUSIC when signals arrive from two or more bearings ($N > 1$) and SNR < 20 dB. The only substantial improvement in accuracy was found for the RA-8 when $N = 2$ and SNR < 20 dB—other accuracy results were mixed or the differences minor, e.g., a 1°–2° advantage for MLE-AP with the ULA-16 when $N = 2$, or a 1° advantage for MUSIC with the RA-8 and $N = 3$. Improvements come at higher computational cost, a factor of 8–15 for MLE-AP over MUSIC. Overall the W-MUSIC and SML DOA methods exhibit inferior performance, though the further exploration of different weighting schemes for W-MUSIC may be worthwhile. If we use SNR as an inverse proxy for range, these results suggest that the use of MLE-AP (or WSF) would result in improved coverage in distant range cells for radars using SeaSonde and RA-8 arrays, and an improved ability to identify current structures presenting the radar with $N \geq 2$. The ULA-16 produces very low σ_{RMS}, and the array has the potential to resolve more than the maximum of $N = 4$ signal sources used here, even with a narrower azimuthal view. Further investigations are required to thoroughly explore this capability.

Since DOA methods essentially work in conjunction with detection methods, further work is needed to translate these results to operational systems. Present detection methods in use (in particular for the SeaSonde [33]) work closely with the MUSIC algorithm, using ratios of the eigenvalues, and reconstructed signal powers, to determine the number of signal sources. Thus, these methods are not appropriate for use with other DOA methods, since MUSICs limitations result directly from the use of the eigendecomposition. It is possible that the empirical detection used here may perform better than algorithmic detection methods, such that the improved data returns observed for MLE-AP and WSF would be lost with “imperfect” detection. However, this analysis demonstrates the potential benefits of using MLE-AP and WSF given a suitable detection method. The similar performance found for WSF compared with MLE-AP may be useful, despite the significant computational demands, if its method for detection proves successful.

Investigations varying empirical signal detection suggest that the differences in performance between DOA methods are not sensitive to the specific designations of N used (shown in Fig. 2). In general, changing the boundaries of the regions affected the results of the different DOA methods more or less equally, e.g., shifting all the curves upward, without changing relative performance. The blank regions between different values of N in Fig. 2, were needed to minimize the impact of signal that was spread to adjacent Doppler bins (i.e., to adjacent velocities) by the FFT. In Fig. 2(a), for example, DOA methods would place solutions for $5 < v_{r} < 10 \text{ cm s}^{-1}$ near 300°, correctly identifying signal at that bearing that was spread from the adjacent Doppler bin (i.e., from the bin near 5 cm s$^{-1}$). In the σ_{RMS} calculation, large bearing errors would result, along with elevated σ_{RMS}. Future simulation runs could use longer FFT lengths to negate the need for the blank regions used in Fig. 2.

The discrete source analysis (Section VII-A) illustrates the influence of source separation ($\Delta \theta$) on DOA performance. As $\Delta \theta \rightarrow 0.5 \Delta \theta_{\text{HPBW}}$ (where $\Delta \theta_{\text{HPBW}}$ is the array half-power beamwidth) MUSIC performance degrades, either in terms of DOA accuracy, or in terms of the number of solutions returned. Thus, the relative magnitudes of $\Delta \theta_{\text{HPBW}}$ (a characteristic of the array) and $\Delta \theta$ (a characteristic of the flow field) have implications for oceanographic radars. For example, the large $\Delta \theta_{\text{HPBW}}$ of the SeaSonde dictates that a large $\Delta \theta$ is required for MUSIC to resolve two signal sources. The performance advantage for MLE-AP with the SeaSonde—in the number of DOA solutions found in simulations with ROMS—results from the fact that $\Delta \theta$ presented by the ROMS surface currents are often less than $0.5 \Delta \theta_{\text{HPBW}}$. Similarly the smaller $\Delta \theta_{\text{HPBW}}$ of the RA-8 results in a breakdown-like effect when $N = 2$ for MUSIC. ROMS flows present source $\Delta \theta$ that fall into the region where MUSIC breaks down and MLE-AP produces high accuracy. Meanwhile, $\Delta \theta_{\text{HPBW}}$ for the ULA-16 is sufficient to distinguish signal sources as presented by ROMS, using any of the DOA methods.

For the SeaSonde, radar simulations with ROMS often result in more simultaneous signal sources (spatial patches of ocean surface with similar radial velocity) than there are antennas ($N \geq M$). This is due in part to the spatial complexity of the ROMS currents. However, the frequency of $N \geq M$ also results from the assumption that each ROMS grid scatters equally, as if Bragg waves occur equally in all directions. Previous simulations (e.g., as modeled by [26]–[28]) assumed a primary wind direction, causing a preferred scattering direction. Adding wind to the simulation narrows the angular region of a range cell with relatively higher SNR. Narrowing the angular region has the effect of reducing N, by decreasing SNR at the off-wind bearings, such that they are close to noise. Simulations here result in $N \geq 2$ in about 78% of the time, compared with publish values of $< 50\%$ [33] from observations made with MUSIC. If the ocean presents radars with $N = 1$ a high fraction of the time, then the difference in ocean current maps produced with MUSIC or MLE-AP (or WSF) may not be significant. However, if $N \geq 2$ frequently occurs, then the differences with MLE-AP and WSF could be significant. Thus, the overall significance of these results may depend on the angular distribution of N presented by real ocean environment.

This paper has identified a potential for improvements in ocean current data produced by oceanographic HF radars, and reveals the need to identify and evaluate detection methods to use with MLE-AP and WSF. Further simulation-based evaluations of detection methods are in progress, to be followed by the
performance analysis of combined detection and DOA estimation methods applied to oceanographic HF radar observations.

ACKNOWLEDGMENT
Discussions with L. Washburn, A. Kirincich, and C. John-son significantly improved this effort. Simulation software was derived from software provided by Dr. D. Barrick, C. Whelan, and B. Rector of Codar Ocean Sensors Ltd. L. Romero generously provided the ROMS fields. The UCSB Center for Scientific Computing provided computing resources: an NSF MR-SEC (DMR-1720256) and NSF CNS-1725797. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Brian M. Emery (M’17) received the B.S. degree in physics, and the M.S. and Ph.D. degrees in mechanical engineering, all from the University of California, Santa Barbara (UCSB), CA, USA, in 1992, 1996, and 2018, respectively.

In 1997, he joined the staff of the UCSB Institute for Computational Earth System Science, where he worked to establish, operate, and maintain a network of 11 oceanographic HF radars. In 2006, he moved to the UCSB Marine Science Institute, where he has been an Assistant Researcher II since 2018. He has served on the Radiowave Operators Working Group (ROWG) steering committee since its inception in 2005, and hosted the 5th ROWG Workshop in 2011. His research is directed toward improving the understanding of coastal ocean dynamics through advances in HF radar techniques.

Dr. Emery is a member of the American Geophysical Union, the IEEE Oceanic Engineering Society, and the Society for Industrial and Applied Mathematics.